
Pesticides and Pollinators

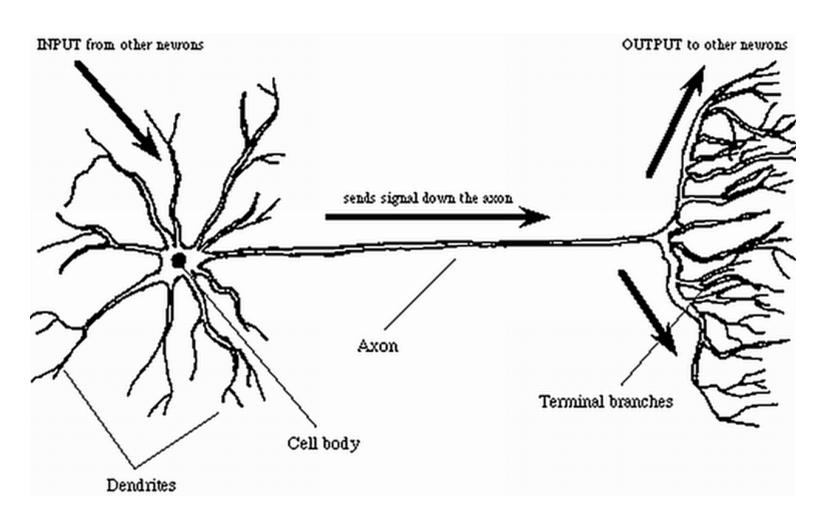
A look at modern neurotoxins

Pollinator losses - not one thing

It's Global

- Total managed honeybee losses in US running 25% per year since 2005.
- Monarch butterflies –only 3% of historical Mexican wintering area now has butterflies.
- Native bees under pressure
- Lower populations of mosquitoes, gnats, and midges impact birds and bats.

Look for Global Scale cause – Environmental toxins and pesticides?


Pesticide Classes

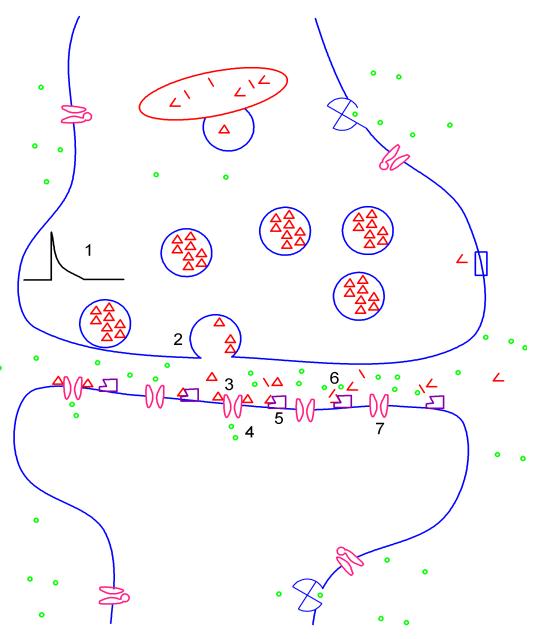
- Organochlorines DDT; Persistent in the environment; Now Mostly Banned
- Organophosphates Malathion; Workhorse pesticides; AChE inhibitor – strong binding; Toxic to mammals; Quick acting, degrades in hours to days.
- Carbamates Sevin; AChE inhibitor weak binding; Degrades quickly.
- Neonicotinoids Imidacloprid; NAChR agonist strong binding; Slow to degrade; Used systemically.

Pesticide Class	Example Chemical	Oral LD50 Honey- bees	Typical Soil half- life	Typical metabolic half-life	Typical binding dissocia- tion time	Typical toxicity time-scaling exponent	Toxic Mechan- ism	Comment
Neonic- otinoids	imidacloprid	50 ng/bee	.5 – 3 yr.	4 hr.	>10 days	2	Synaptic nAChR agonist.	Often used as systemic insecticides
	Thiameth- oxam	20 ng/bee	30-300 days	2-6 hr. (rats)	?	2	Irreversible binding	Direct acting on nAChRs
Pyrethroids	Delta- methrin	60 ng/bee	11-72 days	2 hr.	Several seconds	2 ?	Keeps open voltage gated Na+ ion channels on axon	Direct acting on Na+ channels
Organo- chlorines	DDT	6190 ng/bee	2-15 yr.	6 yr.	Temperture dependantsuggests less than a second.	?	Keeps open voltage gated Na+ ion channels on axon	Most of these chemicals have been banned by international treaty as persistent organic pollutants
	dieldrin	133 ng/bee	5 yr.	9-12 mo. humans		?		
Organo- phosphate	diazinon	370 ng/bee	15-200 days	17 hr.	16 days	1?	Irreversible AChE inhibitor	AChE inhibitors have inherent "threshold" action since
	malathion	720 ng/bee	1-15 days	12 hr.	? days	0.5 (fish)		large fraction of AChE must
	Carbarvl	1540					Reversible AChE inhibitor	be bound to have toxic

The Neuron

Similar structure in insects and Humans

The Synapse – How it Works



Noltage Gated Ion Channel

Synaptic Vesicle

ACh Acetylcholine

- Choline
- AChR Acetylcholine Receptor
- ∠ AChE Acetylcholinesterase
- Na+, K+ Ions
- 0 In resting state Ion Pumps keep Na+ and K+ ion concentrations separated so interior of neuron is at negative electrical potential w.r.t. outside cell.
- 1 Membrane action potential, enhanced by Voltage Gated Ion channels along the axon, ° causes...
- 2 Neurotransmitter vesicles to release ACh into synaptic cleft.
- 3 ACh diffuses quickly across the gap and binds to AChR.
- 4 This opens the AChR ion channel and ions enter the postsynaptic neuron.
- 5 AChE captures ACh and...
- 6 catalyzes its dissociation,
- 7 Without ACh, the ion channels close.

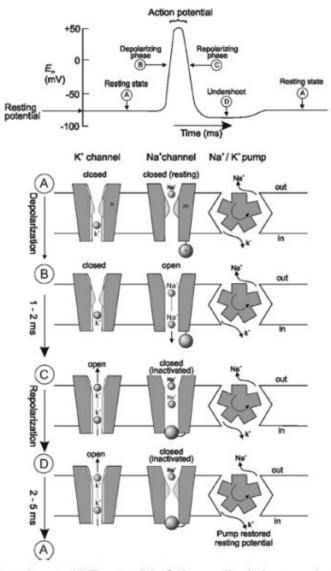
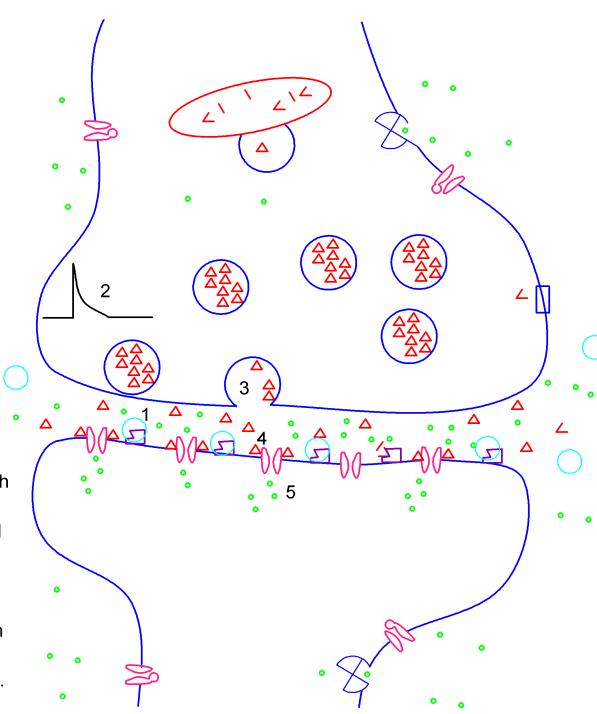


Figure 2. Generation of an action potential. The extracellular fluid surrounding the insect axonal membrane contains a high concentration of sodium ions (Na $^+$) and a low concentration of potassium ions (K $^+$), whilst the reverse is true for the inside of the nerve cell. At the resting potential (A) the axonal membrane is relatively permeable to K $^+$ but not Na $^+$. This makes the inside of the cell negative with respect to the outside, the difference in potential being around -60 mV. Nerve stimulation causes the axonal membrane to become permeable to Na $^+$ due to the sodium channel opening (B). This causes the inside of the axon to become transiently positive and generates the rising phase of the action potential. Sodium channel closure or inactivation (C) (usually within 1 ms) causes an efflux of K $^+$ as a result of opening of potassium channels and generates the falling phase of the action potential. The generation of the action potential results in sequential depolarization of neighbouring regions of the axon, resulting in a wave of depolarization along the axon. An ATP driven Na $^+$ - K $^+$ pump maintains the ion gradient across the axonal membrane (D) and restores the resting potential. Continued transmission of the impulse across the synapse involves release of a chemical transmitter, which becomes attached to receptor sites at the postsynaptic membrane where it depolarizes the membrane to generate another action potential.

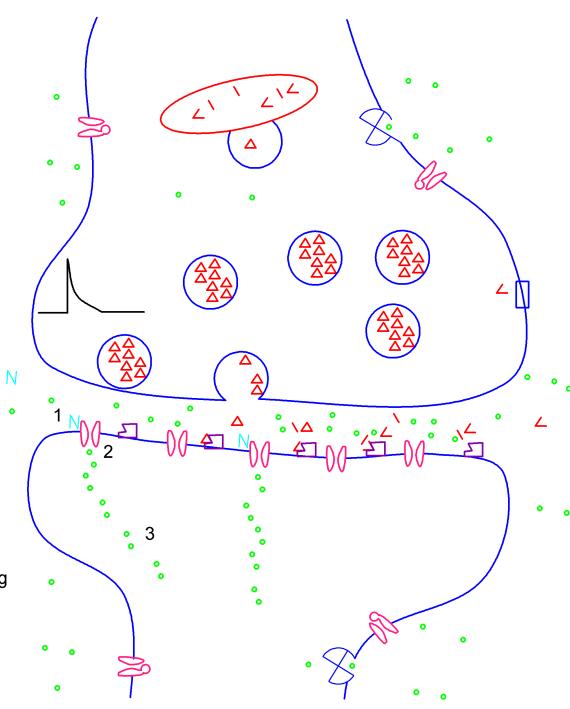


🣂 Voltage Gated Ion Channel

Synaptic Vesicle

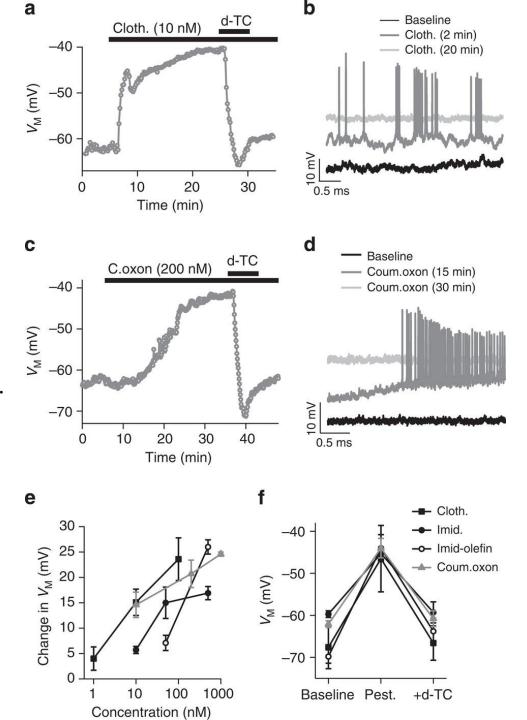
ACh Acetylcholine

- Choline
- AChR Acetylcholine Receptor
- ∠ AChE Acetylcholinesterase
- Na+, K+ Ions
- OP or Carbyl Pesticide Molecule (Acetylcholinesterase inhibitor)
- 1 AChE Inhibitor bind to AChE, reducing the number of sites for ACh recycling.
- 2 Membrane action potential causes
- 3 Neurotransmitter vesicles to release ACh into synaptic cleft.
- 4 ACh diffuses quickly across the gap and binds reversibly to AChR
- 5 This opens the AChR ion channel and ions enter the postsynaptic neuron.
- 6. Without AChE to rid the junction of ACh the ion channels remain open.
- 7 This depolarize the postsynaptic neuron.


>> Voltage Gated Ion Channel

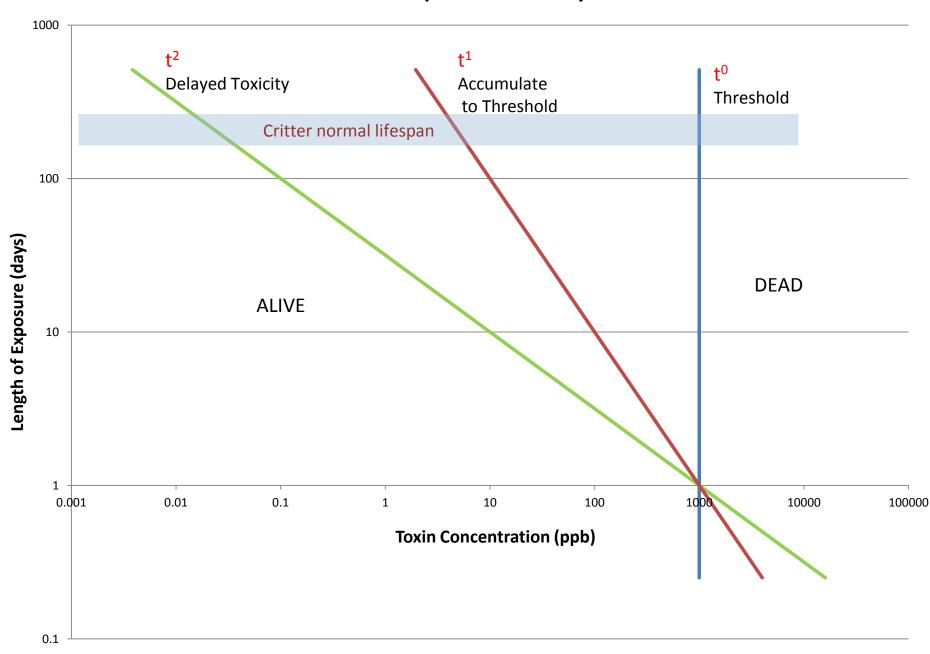
ACh Acetylcholine

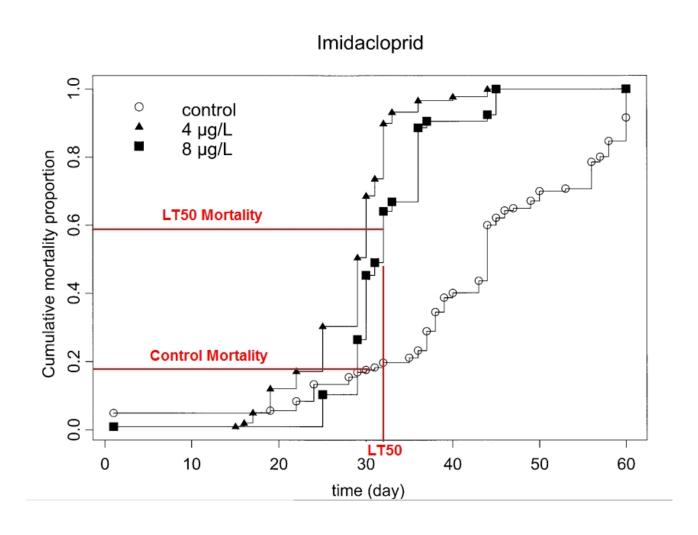
- Choline
- AChR Acetylcholine Receptor
- ∠ AChE Acetylcholinesterase
- Na+, K+ Ions
- Neonicotinoid Molecule

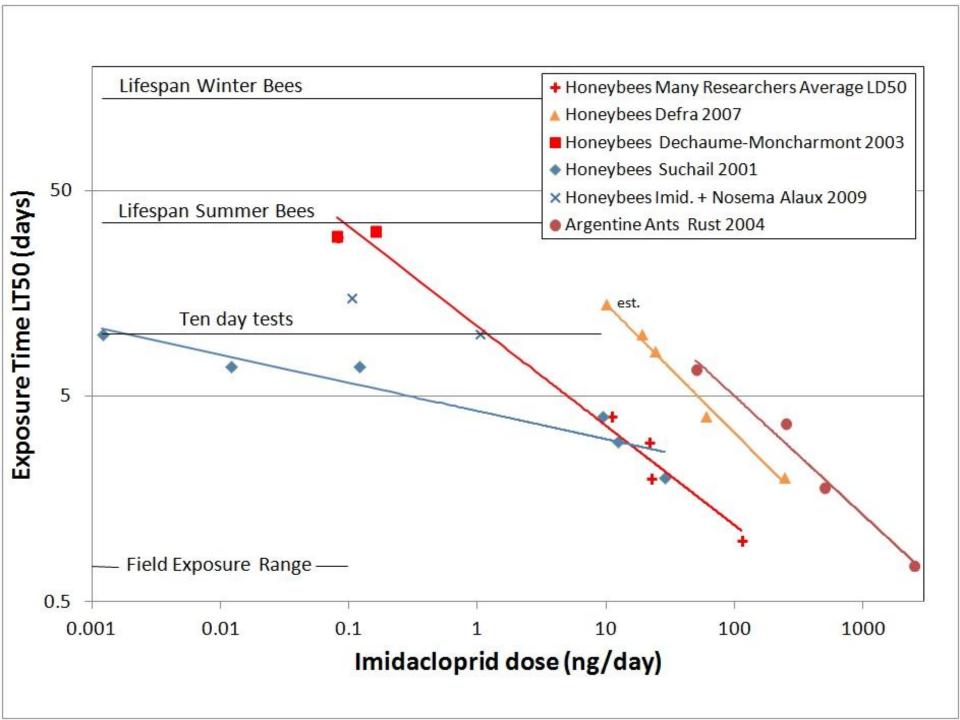

- 1 Neonnicotinoid binds directly to AChR's on postsynaptic neuron.
- 2 This opens the AChR ion channel and ions enter the postsynaptic neuron.
- 3 The ion channels remain open, depolarizing the postsynaptic neuron.

Electrophysiology of Honeybee brain neurons

Cells stimulated with bath of low concentration of clothianidin (neonic) and coumaphos oxon (organophosphate)


As neuron is depolarized action potentials are generated, followed by inactivity when sufficiently depolarized.


Time-dependent Toxicity


- Depends on the toxic mode of action
- t⁰ Threshold action (time doesn't matter)
 CO₂ Suffocation; Carbaryl insecticides
- t¹ Accumulate to a threshold
 Organophosphate insecticides
- t² Enhanced and Delayed Toxicity
 Carcinogens; Heavy Metals; Neonicotinoids

Time-dependent Toxicity

Toxicity Tests Need Enough Time

Time Scaling & Safety Margin

Example: Target insect kill in 3 days; Pollinator protect for 100 days; Assume same intrinsic toxicity of pesticide.

Time Scaling	Description	Ratio	With x3 safety factor
t ⁰	Threshold	1:1	1:3
t ¹	Accumulate to threshold	3:100	1:100
t ²	Enhanced & delayed toxicity	9 : 10000 = 1: 1100	3 : 10000 = 1 : 3300

Lowest Observed Effect Concentration (LOEC) for Imidacloprid

Researcher	LOEC for honey bees				
1998 Bayer - lethality	100 ppb				
2003 Maus, Bayer – survey	20ppb				
2003 Dechaume-Moncharmont - lethality	<4 ppb, 30 days				
2013 DiPrisco, Deformed Wing Virus replic	ation 1 ppb, 1-3 days				
2014 Feltham et.al., Bumblebees – pollen gathering 6 ppb					
2014 Charpentier et al., Fruit fly – mating k	pehavior 0.1 ppb				
2001 Suchail	0.1 ppb, 10 days?				
2013 Rondeau – extrapolate t ² scaling to 1	50 d 0.4 ppb				

Reported Residues

Sunflowers – field 2 – 4 ppb

Canola – field 1 – 6 ppb

Pumpkins – field 4 -87 ppb

Linden trees - flowers 20 - >1000 ppb

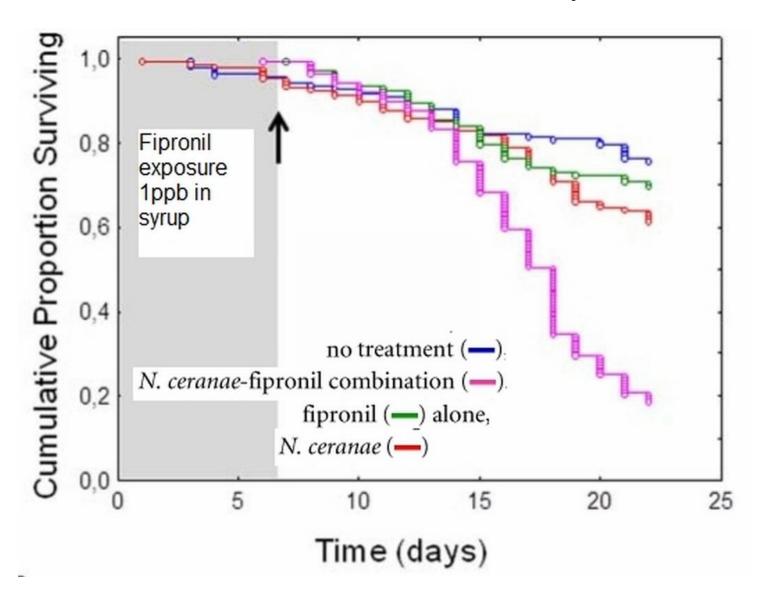
Horse Chestnut – flowers 5 – 283 ppb

Serviceberry – flowers 1000-2800 ppb

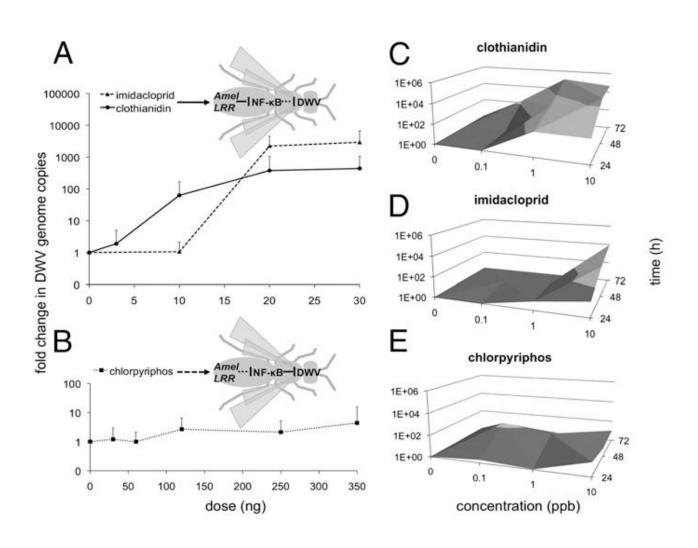
Nursery plants (FOE) 11-1500 ppb

The Problems with Neonics

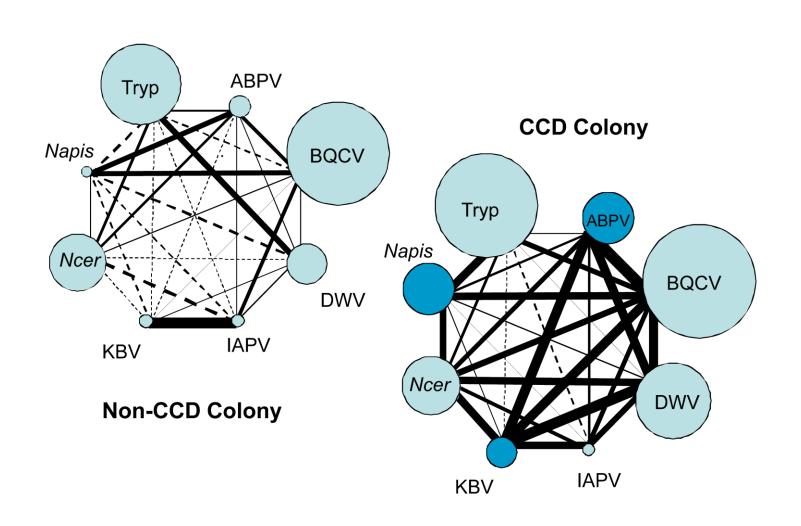
- They are strongly binding and direct acting so they can and do show enhanced & delayed toxicity.
- 2) They have a long lifetime in the environment compared to the life time of non-target insects.
- 3) Are designed to end up in plant tissue, which includes nectar and pollen that are bee food.
- 4) Are water soluble so can move offsite into ground and surface waters.


What no one saw coming

Immune suppression from low residual concentrations of neonics – don't typically see this with OP pesticides.


Pesticide – pathogen interactions

- Hint with Suchail et al. unrepeatable experiment with extraordinarily high sensitivity to imidacloprid – 10 days.
- Pettis et al. 2012 Chronic colony exposure 5ppb imidacloprid makes newly emerged workers more susceptible to Nosema pathogen.


Fipronil Nosema Interaction (Aufauvre)

Neonics & DWV (Di Prisco)

Pathogen Interaction Web (Cornman)


Conclusions

- Neonics have the potential to do damage at virtually undetectable doses <0.1 ppb when interacting with pathogens.
- Time-of-exposure matters! Chronic exposure at sublethal levels will kill and weaken bees.
- Finding a dose that kills target insects yet does not harm bees – can't happen with most neonics.
- Ban them!

Wilsonville Bee Kill

- >50,000 Bumblebees died
- Dinotefuran, a neonicotinoid sprayed while Linden tree was blooming.
- VERY high toxicity killed bees immediately
 930 ppb in bees; 10,000 ppb in flowers!
- Was not applied according to label so pesticide applicator was fined.

Wilsonville Bumblebee Range

Hillsborough and other small bee kills

- Not so dramatic hundreds of dead bees.
- Dinotefuran and Imidacloprid (both neonics) were to blame.
- Applications at least 6 weeks prior to blooming were according to label instructions or nearly so.
- Typical residual toxin tested 40 ppb blossoms killed some bees while they foraged.